
Using ChatGPT to make a game AI

Tero Halkoaho
Loihde

I came up with an interesting idea: using ChatGPT to analyze a game and develop an AI through an
iterative process that can challenge a human. I would ask ChatGPT to create a simple game, in this
case, the classic "Ristinolla" (i.e., TicTacToe). Then I would utilize ChatGPT's ability to analyze
gameplay to develop better gaming algorithms. I would repeat this until it beat me.

Could this work? I bet it could.
To start the process, I crafted the following prompt:

create me a python script that does the following:

● creates a game of tic-tac-toe, where there are ten rows and columns instead of three. The
players take turns to add markers (marked by either a O or an X) to a square without
one, depending on which player they are. The game checks if any player has five or
more similar markers in a row horizontally, vertically, or diagonally and the player who
achieves to get five of their markers in a row first wins.

● contains a method that prints out each board setting with markers signified by Os and
Xs in appropriate places and _ -character where there is none. This method is called
after each turn.

● - there is an model object that is responsible for placing the marker (either X or O
depending on which side it is). The model has a method that gets called every time it is
its turn, and the turn will end the moment it places the marker on the board. The other
model will then take the turn and will place its marker until either one of the players
wins, or there are no longer empty space to put the marker into. If there are no empty
space to put a marker into, the game ends in a draw.

● the models will place their corresponding markers randomly into any free space. This
will be changed later to have better functionality.

The response was quite a functional piece of Python:

After ensuring it worked and that both players made random moves on the board, I refined it further.

modify this so that a human can be the second player, and the board is clickable with a
mouse so that the player can add markers: <relevant code>

Then was the time for the actual logic to emerge:

modify the model so that it calculates the most advantageous move. Make it configurable
so that it calculates N moves ahead. <relevant code>

I also made a few additional requests to make the gameplay more varied:
make this so that if there are multiple equally good places to put the marker, the model
chooses one in random: <relevant code>

To make the game play more like a human would play:

make it so that if it does not find any good positions, it will always place the marker next
to its other marker: <relevant code>

As well as something to speed up the AI:

modify it so that it does not consider boxes that have no markers attached next to them
After a few more basic tweaks like those, I got the AI to work well enough to be playable. Using the
'print_board' method, it displayed the current state of the board after each move:
_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ O _ _ _
_ _ _ X _ O _ _ _ _
_ _ _ _ O X _ _ _ _
_ _ _ _ _ X _ _ _ _
_ _ _ _ _ X _ _ _ _
_ _ _ _ _ _ _ _ _ _
_ _ _ _ _ O _ _ _ _

Then started the interesting stuff.

After defeating the AI, I copied a few of the previously printed board layouts from the game log,
along with the AI model code, into ChatGPT. I then asked it to modify the code so the AI wouldn't be
defeated as easily. I implemented the modifications ChatGPT suggested into my code and played the
game again. This process was repeated several times.

The game

Every time the game lost, I would send the game log and the AI Model code to ChatGPT and simply
ask it to improve the AI. With each round of improvements, I could see how the AI made better
moves and became harder to beat.
After fewer than twenty iterations, this appeared:

It won.

In under two hours, I managed to create a simple game of Ristinolla with an AI that's sometimes smart
enough to beat a human – without writing a single line of code myself and with only the most
rudimentary consideration given to what the AI needs to do to achieve victory.

I have no doubt that each subsequent iteration will improve the AI even further, but by this point, I
had already proven that my concept works. The game of Tic-tac-toe is simple, but I see no reason why
this exact same approach wouldn't work in other, more complex scenarios. This process could even be
automated so that after every defeat, the game log and AI code are sent to the OpenAI API, and the
improved code is implemented.

Perhaps you, dear reader, might be inspired to achieve this?

You can observe the coding style produced by ChatGPT in the final code I've provided below. Use it
as you see fit.

Remember: not a single line of this code was written or edited by a human.

import random

import tkinter as tk
from tkinter import messagebox
import random
import time

class TicTacToe:
def __init__(self, master, size=10):

self.master = master
self.size = size
self.board = [['_' for _ in range(size)] for _ in

range(size)]
self.players = ['O', 'X']
self.current_player_index = 0
self.buttons = [[None for _ in range(size)] for _ in

range(size)]
self.init_ui()

def init_ui(self):
for i in range(self.size):

for j in range(self.size):
self.buttons[i][j] = tk.Button(self.master,

text='_', width=5, height=2,
command=lambda i=i,

j=j: self.cell_clicked(i, j))
self.buttons[i][j].grid(row=i, column=j)

def cell_clicked(self, row, col):
if self.board[row][col] == '_':

player = self.players[self.current_player_index]

self.place_marker(row, col, player)
if self.check_win(row, col, player):

messagebox.showinfo("Game Over", f"Player {player}
wins!")

self.master.quit()
elif self.is_full():

messagebox.showinfo("Game Over", "It's a draw!")
self.master.quit()

else:
self.current_player_index = 1 -

self.current_player_index
if self.current_player_index == 1: # AI's turn

self.ai_play()

def place_marker(self, row, col, player):
self.board[row][col] = player
self.buttons[row][col]['text'] = player

def print_board(self):
for row in self.board:

print(' '.join(row))
print("\n")

def ai_play(self):
model = Model(self.board, self.players[1], depth=5) #

Explicitly set depth

free_positions_next_to_X = model.get_free_positions()
if not free_positions_next_to_X: # No crosses yet, or no

adjacent free positions.
free_positions = [(i, j) for i, row in

enumerate(self.board) for j, cell in enumerate(row) if cell ==
'_']

row, col = random.choice(free_positions)
else:

#_, (row, col) = model.place_marker() # Use minimax
to get the best move

result = model.place_marker()
print(result)
row, col = result

if row is not None and col is not None:
self.place_marker(row, col, self.players[1])
if self.check_win(row, col, self.players[1]): # Note:

Here you should check for AI player's win (self.players[1])
messagebox.showinfo("Game Over", f"Player

{self.players[1]} wins!")
self.master.quit()

elif self.is_full():
messagebox.showinfo("Game Over", "It's a draw!")
self.master.quit()

else:
self.current_player_index = 1 -

self.current_player_index
else:

No free positions, should not happen as the is_full
check precedes it

pass

self.print_board()

def check_win(self, row, col, player):
Check horizontal, vertical, and two diagonal streaks
for d in [(0, 1), (1, 0), (1, 1), (1, -1)]:

count = 1
for i in range(1, 5):

if 0 <= row + d[0]*i < self.size and 0 <= col +
d[1]*i < self.size and self.board[row + d[0]*i][col + d[1]*i] ==
player:

count += 1
else:

break

for i in range(1, 5):
if 0 <= row - d[0]*i < self.size and 0 <= col -

d[1]*i < self.size and self.board[row - d[0]*i][col - d[1]*i] ==
player:

count += 1
else:

break

if count >= 5:
return True

return False

def is_full(self):
for row in self.board:

for cell in row:
if cell == '_':

return False
return True

def play(self):
while True:

player = self.players[self.current_player_index]
model = Model(self.board, player)
row, col = model.place_marker()
self.board[row][col] = player

self.print_board()

if self.check_win(row, col, player):
print(f"Player {player} wins!")
return

if self.is_full():
print("It's a draw!")
return

self.current_player_index = 1 -
self.current_player_index

class Model:
def __init__(self, board, marker, depth=5):

self.board = board
self.marker = marker
self.opponent_marker = 'O' if self.marker == 'X' else 'X'
self.depth = depth

def can_make_five_in_a_row(self, pos):
"""Check if a position can potentially lead to five in a

row."""
row, col = pos
size = len(self.board)
directions = [(0, 1), (1, 0), (1, 1), (1, -1)]

for d in directions:
for start in range(-4, 1):

count = 0
empty_count = 0
for i in range(start, start + 5):

x, y = row + d[0]*i, col + d[1]*i
if 0 <= x < size and 0 <= y < size:

if self.board[x][y] == '_':
empty_count += 1

elif self.board[x][y] == self.marker:
count += 1

else:
break

if empty_count + count == 5:
return True

return False

def get_free_positions(self):
"""Get positions that are next to an 'X' or 'O' and can

potentially make five in a row."""
free_positions = []
for i in range(len(self.board)):

for j in range(len(self.board[i])):
if self.board[i][j] == '_':

for x, y in [(i-1, j), (i+1, j), (i, j-1), (i,
j+1),

(i-1, j-1), (i+1, j+1), (i-1,
j+1), (i+1, j-1)]:

if (0 <= x < len(self.board) and
0 <= y < len(self.board[i]) and
(self.board[x][y] == 'X' or

self.board[x][y] == 'O')):
if self.can_make_five_in_a_row((i,

j)):
free_positions.append((i, j))
break

return free_positions

def place_marker(self, time_limit=1):
start_time = time.time()
depth = 1
best_move = None
while time.time() - start_time < time_limit:

_, move = self.alpha_beta_minimax(depth,
float('-inf'), float('inf'), self.marker)

if move:
best_move = move

depth += 1
return best_move

def alpha_beta_minimax(self, depth, alpha, beta,
current_marker):

if depth == 0 or self.check_win(self.marker) or
self.check_win(self.opponent_marker):

return self.evaluate_board(), None

free_positions = self.get_free_positions()
free_positions.sort(key=lambda pos:

-self.evaluate_position(pos, current_marker))

if current_marker == self.marker:
max_score = float('-inf')
best_move = None
for pos in free_positions:

i, j = pos
self.board[i][j] = current_marker
score, _ = self.alpha_beta_minimax(depth-1, alpha,

beta, self.opponent_marker)
self.board[i][j] = '_'

if score > max_score:
max_score = score
best_move = pos

alpha = max(alpha, score)
if beta <= alpha:

break
return max_score, best_move

else:
min_score = float('inf')
best_move = None
for pos in free_positions:

i, j = pos
self.board[i][j] = current_marker
score, _ = self.alpha_beta_minimax(depth-1, alpha,

beta, self.marker)
self.board[i][j] = '_'

if score < min_score:
min_score = score
best_move = pos

beta = min(beta, score)
if beta <= alpha:

break
return min_score, best_move

def evaluate_board(self):
if self.check_win(self.marker):

return 10**7
elif self.check_win(self.opponent_marker):

return -10**8
else:

ai_sequences = self.get_sequences(self.marker)
opponent_sequences =

self.get_sequences(self.opponent_marker)
ai_adjacent = sum(self.adjacent_friendly_count(pos,

self.marker) for pos in self.get_free_positions())
center_bonus = sum(self.center_distance_heuristic(pos)

for pos in self.get_free_positions())
opponent_almost_winning =

self.count_sequences_of_length(self.opponent_marker, 4) * -10**6
return (ai_sequences - opponent_sequences) + ai_adjacent +

center_bonus + opponent_almost_winning

def count_sequences_of_length(self, marker, length):
count = 0
size = len(self.board)
for row in range(size):

for col in range(size):
if self.board[row][col] == marker:

for d in [(0, 1), (1, 0), (1, 1), (1, -1)]:
seq_count = 1
empty_count = 0
for i in range(1, 5):

if 0 <= row + d[0]*i < size and 0 <=
col + d[1]*i < size:

if self.board[row + d[0]*i][col +
d[1]*i] == marker:

seq_count += 1
elif self.board[row + d[0]*i][col

+ d[1]*i] == '_':
empty_count += 1

else:
break

if seq_count == length and empty_count ==
(5 - length):

count += 1
return count

def get_sequences(self, marker):
count = 0
size = len(self.board)
for row in range(size):

for col in range(size):
if self.board[row][col] == marker:

for d in [(0, 1), (1, 0), (1, 1), (1, -1)]:
seq_count = 1
for i in range(1, 5):

if 0 <= row + d[0]*i < size and 0 <=
col + d[1]*i < size and self.board[row + d[0]*i][col + d[1]*i] ==
marker:

seq_count += 1
else:

break
if seq_count == 2:

count += 1
elif seq_count == 3:

count += 10
elif seq_count == 4:

count += 100
return count

def adjacent_friendly_count(self, pos, marker):
size = len(self.board)
row, col = pos
count = 0
for d in [(-1, 0), (1, 0), (0, -1), (0, 1), (-1, -1), (-1,

1), (1, -1), (1, 1)]:
if 0 <= row + d[0] < size and 0 <= col + d[1] < size

and self.board[row + d[0]][col + d[1]] == marker:
count += 1

return count

def check_win(self, marker):
size = len(self.board)
for row in range(size):

for col in range(size):
if self.board[row][col] == marker:

for d in [(0, 1), (1, 0), (1, 1), (1, -1)]:
win = True
for i in range(5):

if not (0 <= row + d[0]*i < size and 0
<= col + d[1]*i < size and self.board[row + d[0]*i][col + d[1]*i]
== marker):

win = False
break

if win:
return True

return False

def evaluate_position(self, pos, marker):
"""Evaluate the value of a specific position on the

board."""
score = 0
i, j = pos
for d in [(-1, 0), (1, 0), (0, -1), (0, 1)]:

sequence = [self.board[i + d[0]*k][j + d[1]*k] for k
in range(-2, 3) if 0 <= i + d[0]*k < len(self.board) and 0 <= j +
d[1]*k < len(self.board[0])]

score += self.evaluate_sequence(sequence, marker)
return score

def evaluate_sequence(self, sequence, marker):
"""Evaluate a sequence of five board positions."""
score = 0
count_marker = sequence.count(marker)
count_empty = sequence.count('_')
if count_marker == 4 and count_empty == 1:

score += 10000

elif count_marker == 3 and count_empty == 2:
score += 1000

elif count_marker == 2 and count_empty == 3:
score += 100

elif marker == self.opponent_marker and count_marker == 4
and count_empty == 1:

score -= 50000 # Very high penalty for opponent's
potential win

return score

def center_distance_heuristic(self, pos):
center = (len(self.board) // 2, len(self.board) // 2)
distance = abs(center[0] - pos[0]) + abs(center[1] -

pos[1])
return -distance # Closer to center is better

if __name__ == "__main__":
root = tk.Tk()
root.title('Tic Tac Toe')
game = TicTacToe(root)
root.mainloop()

